课程:
机器视觉技术的介绍
机器视觉是人工智能正在快速发展的一个分支。简单说来,机器视觉是用机器模拟人的视觉功能,即通过机器视觉产品(图像摄取装置,分CMOS和CCD两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统进行各种运算处理来提取信息并加以理解,最终用于实际识别、检测、测量和控制的技术。其显著特点是速度快、精度高、信息量大、功能多。
机器视觉由机械自动化+仪器仪表+软件编程+光学方案设计组成,包括图像处理技术、机械工程技术、电气工程技术、传感器、模拟与数字视频技术、控制、电光源照明、光学成像、计算机软硬件技术等,涉及人工智能、计算机科学、图像处理、模式识别、物理学、神经生物学等诸多领域的技术。
机器视觉定位是什么?和机器视觉检测有什么不同?
视觉定位类项目通常结合机器人学,轴组运动学控制,常常使用仿射变换,几何学,手眼标定等算法,在数学原理层面要熟悉常用的矩阵转换公式,几何平面学公式等。追求的是高精度定位效果,通常定位抓取精度在0.01mm。应用场景包括2D定位,3D无序定位抓取等。需要对自动化设备,机器人学等十分了解。机器视觉检测通常指的是目标检测和缺陷检测,在工业上,需要对CCD传感器得到的图像做图像处理找到某些缺陷,在算法层方面需要掌握Blob分析,预处理算法,边缘提取等,偏重于图像处理本身。在计算机视觉方向,视觉检测还有目标检测,通常用卷积神经网络实现对目标的检测和分类,比如说现在的人脸识别,自动驾驶等。综合以上,机器视觉定位更偏向于视觉算法和自动化结合,视觉检测更注重于图像算法本身。
机器视觉技术的发展趋势
机器视觉相关技术研发与日俱增
从我国机器视觉专利技术总体申请量变化趋势来看,机器视觉相关技术研发与日俱增。截至2020年10月21日,我国与机器视觉相关的专利申请数量为12441项。2010年机器视觉相关申请数量为215项,至2019年,申请数量达到2074项。截至2020年10月21日,与机器视觉相关的专利申请量为694项。
注:在SooPAT 输入“机器视觉”搜索结果,2020年数据截至2020年10月21日。
2010年,我国机器视觉相关专利公开数量为183项,至2019年,公开数量达到2482项。截至2020年10月21日,与机器视觉相关的专利公开量为2212项。
注:在SooPAT 输入“机器视觉”搜索结果,2020年数据截至2020年10月21日。
高校成为机器视觉技术研发主力军
从我国机器视觉技术申请人构成来看,大学高校是机器视觉技术研发的主力军。截至2020年10月21日,前十位申请人中九位是高校,其中浙江大学和华南理工大学最多均为148项,均占比1.19%,广东工业大学申请专利数量排第三,为142项,占比1.14%。
注:在SooPAT 输入“机器视觉”搜索结果,2020年数据截至2020年10月21日。
机器视觉技术主要以物理的测量、计算方面为主
从我国机器视觉部类构成来看,G(物理)部类是机器视觉技术的主要类别,占据近六成的比例。截至2020年10月21日,部类中G(物理)占比为59%,其次为B(作业;运输)占比22%,H(电学)占比8%,A(农业)占比6%。
注:在SooPAT 输入“机器视觉”搜索结果,2020年数据截至2020年10月21日。
按大类来划分,物理部类下的G01(测量;测试)和G06(计算;推算;计数)占据机器视觉专利过半的份额,分别为32%和23%。。B07(将固体从固体中分离;分选)和H04 (电通信技术)均占比6%。
注:在SooPAT 输入“机器视觉”搜索结果,2020年数据截至2020年10月21日。
—— 更多数据及分析请参考前瞻产业研究院《中国机器视觉产业发展前景与投资预测分析报告》。
机器视觉技术与应用主要有哪些?
机器视觉系统主要具有三大应用功能:
第一是定位功能,能够自动判断感兴趣的物体、产品在什么位置,并将位置信息通过一定的通讯协议输出,此功能多用于全自动装配和生产,如自动组装、自动焊接、自动包装、自动灌装、自动喷涂,多配合自动执行机构(机械手、焊枪、喷嘴等)。
第二是测量功能,也就是能够自动测量产品的外观尺寸,比如外形轮廓、孔径、高度、面积测量等。
第三是缺陷检测功能,这是视觉系统用的最多的一项功能,它可以检测产品表面的相关信息,如:包装正误,包装是否正确、印刷有无错误、表面有无刮伤或颗粒、破损、有无油污、灰尘、塑料件有无穿孔、雨雾注塑不良等。