课程:
- 1、ytc机械式定位器的具体调校步骤
- 2、求助阀门定位器如何调试阀门定位器如何调试,怎么操作
- 3、修理厂检测gps定位器要多少钱?
- 4、阀门定位器的主要作用有那些?
- 5、铁森TS800定位器调试步骤
- 6、调节阀定位器的故障有哪些
ytc机械式定位器的具体调校步骤
机械式定位器调试步骤
一、条件:①稳定的气源 压力≥0.3MPa(角行程定位器压力≥0.5MPa) ②4-20mA信号输入设备
二、调试:
①打开定位器前盖,打开电源接线盒。
②把稳定气源接入过滤减压阀并密封严紧。
③区分正负输入端接好信号输入设备。
④打开气源开关,向下调节调“0”旋钮,直至排气压力表指针不为0,然后反方向缓慢旋转调“0”旋钮,使压力表指针刚好处于0位置。
⑤输入25%(8mA)、50%(12mA)、75%(16mA)、100%(20mA)信号,观察指针下降(上升)行程:
A.若单次行程超过刻度盘的1/4,说明定位器量程过大,此时应调节量程调节旋钮(先松开螺丝,然后调节下方的旋钮,向“—”方向调节。根据实际情况确定调节的程度,单次微调,边试边调)。
B.若单次行程过小或不足刻度盘的1/4,说明定位器量程过小,操作与A相同,方向相反。
⑥每次调节量程调节旋钮后,重新进行试验,若实际行程与理论行程差距仍然很大,则再调节量程调节旋钮;若实际行程与理论行程差距较小,则调节调“0”旋钮,使 指针移动到对应的刻度上,再输入信号观察指针移动是否正确。
注:通过量程调节旋钮和调“0”旋钮的配合来调节量程和行程,已达到调试的目的。
注意事项:
1.当输入信号为20mA是,定位器排气压力必须>3公斤(球阀5公斤),一般为3.2-4公斤。若压力不足则调节阀开启/关闭不严,无法正常工作。
2.气开阀:当输入信号为0时,排气压力必须为0,否则阀门没有完全关闭。
求助阀门定位器如何调试阀门定位器如何调试,怎么操作
山武阀门定位器需要调试,调试中较为重要的是内部开关的整定。现在我们来看看如何进行内部的调整。
1.调节过滤减压阀气源至执行机构的额定值,输入18mA±1mA的信号到AVP;
2.按“UP”键,保持3秒钟,直至阀门定位器动作,自整定开始,松开按钮;
3.阀门定位器自动进行全开-全关来回二次,然后在大约50%开度处稍作停留,停留在对应输入信号(18mA)的开度位置,整个过程大约3分钟;
4.改变输入信号后,核对阀开度,自整定完成;
5.当自整定在进行时,若输入信号低于4mA,自整定中断,必须重新自整定。自整定完成后,保持输入信号4mA以上至少30秒,才能把自整定参数自动保存在AVP中;
6.当自整定期间,若连接SFC手操器(注意正负极)于AVP阀门定位器上,按SFC手操器的ID操作。
修理厂检测gps定位器要多少钱?
每个修理厂收费情况应该都有区别,有些修理厂没有专业的检测场地,检测的准确度也不高,收费自然要低一点。有些修理厂有专门的检测场地,而且有完善的检测系统,那收费自然要高一些。而且车辆GPS定位检测的费用是分车型的,车辆越小,费用越便宜,车辆越大,费用越高。价格区间从几百元到几千元不等。
而且这只是基础费用,每多检测出来一个GPS需要另外加收费用的,由于有些GPS是休眠型的,只有固定的时间才会对外发送信号,所以检测起来非常复杂,这个时候就需要把车放到检测公司48小时左右,然后进行一个连续监测,好把所有的GPS都检测出来。
阀门定位器的主要作用有那些?
在调节阀的使用中,一般需要配有定位器,定位器是控制系统的终端,一旦其发生故障,将直接影响装置的安全运行,对生产过程影响非常大。智能定位器是运用智能阀门定位器,能够改善调节阀的流量特性和性能,可以通过与DCS或总线设备进行数字信息通讯,提升企业生产控制能力,为装置的安全稳定生产提供保障。比较常用的是智能阀门定位器,我们来介绍下它的作用:
1.机械型普通定位器存在的不足
1) 机械型普通定位器多为机械力平衡原理,它采用喷嘴挡板机构,可动件较多,容易受温度波动、外界振动等干扰的影响,耐环境性差;弹簧的弹性系数在恶劣环境下能发生改变,会造成调节阀非线性,导致控制质量下降;外界振动传到力平衡机构,易造成部件磨损以及零点和行程漂移,也使定位器难以工作;
2)由于喷嘴本身的特性,执行器在稳定状态时也要大量消耗压缩空气,若使用执行器数量较多,能耗较大;而且喷咀本身是一个潜在故障源,易被灰尘或污物颗粒堵住,使定位器不能正常工作;
3)常规定位器手动调校时需要使用专用设备、不隔离控制回路是不可能的,且零点和行程的调整互相影响,须反复整定,费时费力,非线性严重时,则更难调整。
2.Logix520智能阀门定位器的组成和原理
2.1Logix520智能阀门定位器的组成
Logix520智能阀门定位器是一种具有HART通信协议的智能阀门定位器,由三部分组成:微处理器电子控制的模件,包括HART通信模块和就地用户界面开关;电/气动转换器模件的压电阀;阀位传感器。
2.2Logix520智能阀门定位器的工作原理
整个控制回路由两线、4~20mA信号控制。HART模件送出和接收叠加在4~20mA信号上的数字信息,实现与微处理器的双向数字通信。模拟量的4~20mA信号传给微处理器,与阀位传感器的反馈进行比较,微处理器根据偏差的大小和方向进行控制计算(一级控制),向压电阀发出电控指令使其进行开、闭动作。压电阀依据控制指令脉冲的宽度对应于气动放大器输出压力的增量,同时气动放大器的输出又被反馈给内控制回路,再次与微处理器的运算结果进行比较运算(二级控制),通过两级控制输出信号到执行机构,执行机构内空气压力的变化控制着阀门行程。当控制偏差很大时,压电阀发出宽幅脉冲信号,使定位器输出一个连续信号,大幅度的改变至执行机构的信号压力驱动阀门快速动作;随着阀门接近要求的位置,命令要求的位置与测得位置的差值变小,压电阀输出一个较小脉宽的脉冲信号,断续、小幅度的改变至执行机构的信号压力,使执行机构接近新命令位置的动作平缓。当阀门到达要求的位置(进入死区)时,压电阀无脉冲输出,定位器输出保持为零,使阀门稳定在某一位置不动。
3.Logix520智能定位器的调校
通过就地用户界面DIP设置开关,可完成定位器的增益、正反作用、定位器特性以及是否允许自动调校等基本设置;在不增加工具的条件下,能够进行自动或手动校准定位器;并且可以通过就地用户界面手动控制按钮,实现手动控制调节阀。
3.1自动调校
将“Quick_cal”DIP开关置于“自动”,按住定位器就地界面板上的“Quick_cal”按钮约三秒钟,定位器会全关阀门并登记0%位置,然后,打开阀门到停并登记100%位置,反复进行两遍,在这一过程中,定位器要测量两个方向的定位速度,以确定最小的定位增量(第二遍过程中在50%略停检测阀位中点偏移),其间面板上状态指示灯会按“Y-R-G-G”的顺序闪亮,表明校准正在进行中。当指示灯回到从绿灯开始的变化顺序时,校准自动完成。
3.2手动调校
将“Quick_cal”DIP开关置于“慢进”,校准过程会在一开始时关闭阀门,零点位置自动定在阀座处,量程则需用户手动设定;当面板上状态指示灯按“Y-R-R-G”顺序闪亮,使用“慢进↑”按钮,手动把阀门调到约100%位置,然后同时按两个“慢进”按钮,阀门会进行开关行程,当面板上状态指示灯再次按“Y-R-R-G”顺序闪亮时,使用“慢进↑”按钮,再次调节阀门到精确的100%,然后再次同时按两个“慢进”按钮,登记100%位置,在之后完成校准的过程中,再不需要操作。当指示灯回到从绿灯开始的顺序时,完成校准。
这个功能使调校工作方便快捷,而且调校的线性好,精度高,响应速度和死区适中,稳定性好。
4.Logix520阀门定位器的其他特点
1)就地面板装有红黄绿三个发光二极管,通过多种组合指示操作状态或警告工况,具有诊断、监测功能;三个LCD闪亮顺序组合所表示的基本含义:任何以绿色开始的闪亮顺序,表明处于正常操作模式,没有内部问题、错误和报警;任何以黄灯开始的闪亮顺序,表明是在特殊校验或测试状态;任何以红灯开始的闪亮顺序,表明存在操作问题或故障。
2)耗气量非常小,在0.6MPa稳定状态下,仅为0.12NM3/h,不足常规定位器的8%;对气源压力的变化不敏感;
3)采用同一型号既可用于直行程又可用于角行程;通过选配双作用模件,可以实现控制双作用活塞缸执行器;
4)“紧闭”功能默认设置起始风压,确保执行机构对阀座适宜的定位压力,使调节阀在不同工况下保证零位“紧密关闭”;
5)使用HART通讯协议,与定位器进行双向通信;
5.在实际使用中应该注意的问题
5.1对调节信号的带负载能力有较高的要求
在实际使用过程中,由于Logix520定位器的输入阻抗较高,当输入信号为20mA时,供电电压的最小要求值为12VDC、带负荷能力不小于600Ω,否则定位器不能正常工作;最小输入电流不小于3.6mA时,才能确保其性能。
5.2应合理设置定位器的动作死区
定位器死区设置越小,定位精度越高,这就给人们造成一个误区,以为死区越小越好,但这样会使压电阀及反馈杆等运动部件的动作越频繁,有时会引起阀门振荡,影响定位器和阀门的使用寿命,故定位器的死区设置不易过小;定位器设置更改后,必须重新调校后才能生效;
5.3Logix520定位器的安装
定位器的安装有一个重要原则就是,定位器、阀杆、反馈杆三部分要构成闭环负反馈。安装时可以这样检验:定位器安装后,阀杆和反馈杆不连接,用手转动反馈杆,若阀杆动作方向与反馈杆动作方向相反,则说明已构成闭环负反馈;此时要将调节阀阀位置于50%,并使反馈杆处于水平位置,然后将反馈杆和阀杆固定,这样可以保证定位器工作在最佳线性段。定位器安装不平正,也会增加其线性偏差。
5.4Logix520定位器流量特性的选择
调节阀的流量特性是由阀芯的加工特性所决定的,如果工艺要求与其相符,则定位器的输出特性应选择线性输出;在实际使用中,若阀芯特性与工艺要求不符,则可以通过定位器输出特性的设置来改变阀门的整体流量特性,如可以将阀芯为线性特性的调节阀,通过把定位器输出特性设置为等百分比特性,即可将具有线性阀芯的阀门变为等百分比流量特性的阀门来使用。
5.5Logix520定位器的维修
定位器不同的功能模块损坏,造成定位器无法使用时,如果整体更换,费用高昂;这时可以利用无故障的模块对定位器进行重新组装,但组装后要根据不同的调节阀进行重新设置,由于使用定位器的调节阀(行程等)变了,利用自动调校可能达不到使用要求,这时可以先手动调校确定其行程,然后再用自动调校校准。这样可以使调节阀定位精准、具有合适的响应速度,从而满足过程控制的要求,也节约了大量的资金。
6.Logix520阀门定位器在某厂的实际应用
1)某甲醇装置C-203A/B/C氧压机组震动剧烈,其回流管线上的PCV-2008A/B/C调节阀,使用常规定位器,喷嘴挡板不久即出现磨损,零点量程时有漂移,定位器频繁损坏,过程控制质量极差、危及安全生产;采用Logix520定位器后,由于其全密封结构,可动部件很少,力转换过程没有机械传动,消除了振动产生的干扰,使这个问题随之化解,大大降低了维护量、节约了资金,保证了过程控制质量和装置安全运行。
2)某装置气化炉废锅液位LCV-2003A/B调节阀,改造前使用常规定位器,安装在气化炉附近,工作环境温度较高(80℃左右),介质状态为高温高压(304℃、8MPa),为防止介质泄漏,将填料压得较紧,导致阀杆动作迟滞缓慢,阀位产生阶跃变化,稳定性较差,对过程控制影响较大。而且操作难度大,仪表维护量多;采用Logix520定位器后,定位器通过两级控制,加之与主控气路连在一起的压电阀可以释放很短的控制脉冲,使输出至膜头的信号更精确、更稳定,阀位的变化平稳精准;还可将定位器就地界面上的“valvestability”DIP开关拨到“HiFriction”和“LoFriction”选项中的“HiFriction”端,用以消减阀杆承受的高摩擦力和不平衡力造成的影响,基本消除了上述问题。
3)2015年4月,仪表维护人员巡检至某装置加氢反应器液面调节阀LV-1501B时,发现Logix520阀门定位器的状态指示灯显示为“R-Y-Y-Y”,由此判断并检查出调节阀膜头漏气,及时进行了处理,避免了因调节阀动作失灵危及装置安全生产;同样还是维护人员巡检时发现TV-0706B调节阀的Logix520阀门定位器状态指示灯显示“R-Y-Y-R”,由此检查出减压阀输出变小,调节阀供气压力不足,无法满足行程要求。维护人员检查后发现减压阀损坏,及时更换了减压阀并按额定要求恢复气源压力,避免了操作过程
铁森TS800定位器调试步骤
铁森TS800定位器调试步骤共有两大步。
第一步:电缆接头连接 ,① 电缆引入耐压防爆接头并连接到防爆接线盒内。
② 拧紧耐压防爆接头上的固定螺丝。
第二步:电源端子的连接。①宁夏接线盒外部锁定螺丝,并打开接线盒盖子。
②接线盒内部的接线柱上标有(+)的端子连接外部信号线的正(+),标有(-)的端子连接信号线的(—)极。为了防止防止接触不良,请拧紧固定螺丝。
③连接接地线后,用螺丝固定。
④拧紧接线盒盖子,并锁紧锁定螺丝。
设定方法:零点和量程设定方法。① 输入4mA电流信号,调整零点调节旋钮,使阀位达到 0% 的位置。② 输入
20mA电流信号,调整量程调节旋钮,使阀位达到的位置。
③ 调整量程旋钮后,零点的位置也会发生变化,因此重新进行上述步骤。
④ 调整零点后,量程也会发生变化,因此在进行上述第二步骤。
⑤ 反复进行上述第1~2步骤2~3次,可以准确设定阀门的零点和量程位置。
调节阀定位器的故障有哪些
1.阀门定位器有信号输入,但无输出压力信号
(1)电/气定位器,衔铁与线圈架之间有异物。
(2)恒节流孔堵塞。
(3)喷嘴挡板配合不良或喷嘴挡板损坏。
(4)放大器中膜片(金属膜片或者橡胶膜片)损坏。
(5)气路连接有误(包括放大器)。
(6)电/气定位器输入信号线正负极接反。
(7)定位器的输入接线盒内的二极管开路或接线不良。
(8)气源压力的大小不合要求。
(9)放大器耗气量超额定数值太大。
(10)电/气定位器磁钢极性的安装相异。
(11)放大器预紧力超重。(12)滑阀式放大器内的滑阀被异物卡死。
(13)“手动/自动”切换位置不对(非手动位置和非自动位置)。
(14)电/气定位器输入电信号短路。
(15)平衡弹簧安装,调试不好。
2.下行程定位器输出压力变化缓慢
(1)放大器的气锥阀的锥度较小。
(2)放大器膜片长期使用,产生弹性滞后现象。
(3)气动定位器的感测元件(波纹管或膜盒)长期使用,产生弹性滞后。
(4)反馈弹簧产生弹性滞后。
3.上行程定位器给出压力变化缓慢
(1)放大器进气球阀陷得过深。
(2)放大器耗气量较大。(3)放大器进气球阀沾污,流通面积减小。
(4)恒节流孔的直径与喷嘴直径之比小于额定值(技术要求数值)。
(5)喷嘴与挡板之间的配合不好。
(6)衔铁与线圈架之间有轻微的磨擦。
4.定位器线性不好
(1)反馈凸轮或弹簧选择不当。
(2)反馈机构安装不好。
(3)反馈凸轮或弹簧安装不当。
(4)喷嘴或挡板有沾污现象。
(5)滑阀式放大器内的滑阀与其接触面有磨擦现象。
(6)背压有轻微泄漏现象。
(7)整机安装不当。
(8)反馈连接杆面调节阀有卡现象。
5.无输入信号,定位器有输出压力
(1) 喷嘴有堵塞。
(2)放大器进气球阀沾污造成卡不死或者密封面损坏。
(3)恒节流孔的直径与喷嘴直径径比大于额定值。
(4)放大器各气路板的连接有问题。
(5)放大器金属膜片变形或安装不良,造成阀杆将进气球阀顶开(对预紧力不可调放大器而言)。
(6)挡板已盖住喷嘴的位置。
6.行程不足(定位器输出压力达不到最大值)
(1)反馈杆与执行机构推杆连接件的接触位置不对。
(2)永久磁铁产生的磁场强度较额定值小。
(3)挡板与喷嘴的配合不好。
(4)反馈凸轮的初始位置选择不良。
(5)主杠杆平衡弹簧安装不良。
7.定位器盖上盖后,性能会发生变化
8.定位器更新以后,会出现工作不正常
9.定位器性能变化无常
10.定位器输入小信号时,输出达最大值
11.定位器输出振荡
12.定位器零点漂移