生活指南——让生活变得更简单

准备放疗定位是怎么做_PET放疗定位准备工作

课程:

pET/CT有什么价值,主要做什么内容??

PET-CT将CT与PET融为一体,由CT提供病灶的精确解剖定位,而PET提供病灶详尽的功能与代谢等分子信息,具有灵敏、准确、特异及定位精确等特点,一次显像可获得全身各方位的断层图像,可一目了然的了解全身整体状况,达到早期发现病灶和诊断疾病的目的。PET-CT的出现是医学影像学的又一次革命,受到了医学界的公认和广泛关注。

PET/CT目前是全球最高端的医学影像诊断设备,堪称“现代医学高科技之冠”。

PET(Positron Emission Computed Tomography,PET)的全称为正电子发射计算机断层扫描。它是一种最先进的医学影像技术,PET技术是目前唯一的用解剖形态方式进行功能、代谢和受体显像的技术,具有无创伤性的特点。是目前临床上用以诊断和指导治疗肿瘤最佳手段之一。

PET的独特作用是以代谢显像和定量分析为基础,应用组成人体主要元素的短命核素如11C、13N、15O、18F等正电子核素为示踪剂,不仅可快速获得多层面断层影象、三维定量结果以及三维全身扫描,而且还可以从分子水平动态观察到代谢物或药物在人体内的生理生化变化,用以研究人体生理、生化、化学递质、受体乃至基因改变。近年来,PET在诊断和指导治疗肿瘤、冠心病和脑部疾病等方面均已显示出独特的优越性。

PET/CT则是将PET和CT(计算机体层显像)有机结合在一起,使用同一个检查床和同一个图像处理工作站,将PET图像和CT图像融合,可以同时放映病灶的病理生理变化和形态结构,明显提高诊断的准确性。

一、PET-CT能对肿瘤进行早期诊断和鉴别诊断,鉴别肿瘤有无复发,对肿瘤进行分期和再分期,寻找肿瘤原发和转移灶,指导和确定肿瘤的治疗方案、评价疗效。在肿瘤患者中,经PET-CT检查,有相当数量的患者因明确诊断,而改变了治疗方案;PET-CT能准确评价疗效,及时调整治疗方案,避免无效治疗。总体上大大节省医疗费用,争取了宝贵的治疗时间。

二、PET-CT能对癫痫灶准确定位,也是诊断抑郁症、帕金森氏病、老年性痴呆等疾病的独特检查方法。 癫痫的治疗是世界十大医疗难题之一,难就难在致痫灶的准确定位,PET-CT使这一医学难题迎刃而解。经PET-CT的引导,采用X-刀或γ-刀治疗,收到很好的治疗效果。

三、PET-CT能鉴别心肌是否存活,为是否需要手术提供客观依据。 目前,PET-CT心肌显像是公认的估价心肌活力的“金标准”,是心肌梗死再血管化(血运重建)等治疗前的必要检查,并为放疗评价提供依据。PET-CT对早期冠心病的诊断也有重要价值。

四、PET-CT也是健康查体的手段,它能一次显像完成全身检测,可早期发现严重危害人们身体健康的肿瘤及心、脑疾病,达到有病早治无病预防的目的。

现代医学认为,绝大多数疾病是体内生化过程失调的结果,PET-CT可在生理状态下动态地定量观察体内分子水平的生化变化。随着人类基因的解密,对危害人类健康的肿瘤及心、脑疾病和各种遗传性疾病的产生、发展和治疗后转归,将从根本上得到认识,也可望从根本上找到有效的治疗方案。PET-CT基因显像是连接临床与基础基因研究的“桥梁”。PET-CT目前国内、国际最先进的体检设备,必须提前预约。

预约电话;0571-81533591

放射治疗的一般流程是怎么样的?

放射治疗一般由以下几个主要流程组成:

登记 --诊断检查  -- CT定位 --器官(靶区)勾画 --计划设计(和计划评估)--计划验证和确认 --治疗(多次)--出院 --随访。

其中,几个关键的步骤是:

1、 诊断检查

检查主要是确诊肿瘤,肿瘤早期多数无特殊症状和体征,尤其是内脏的恶性肿瘤,早期诊断十分困难。随着分子生物学、细胞生物学、肿瘤免疫学及肿瘤系列化研究的飞速发展,肿瘤的实验室诊断有了长足的进步,尤其是杂交瘤技术研究的成功和单克隆抗体工程的崛起,对肿瘤的早期诊断和疗效判断提供了更多的参考指标。常规实验检查虽然不能诊断肿瘤,但是对于鉴别诊断和决定肿瘤治疗方案是不能缺少的,这些方法有:(1)血、尿、粪常规检查;(2)痰液检查;(3)胸、腹水检查;(4)胃及十二指肠液检查;(5)生化检查;(6)肿瘤标记物用化学或免疫学方法检查。

这里不对这些常规方法做深入解释,需要提出的是,影像检查都是在这个阶段进行的,比如CT/MRI/PET-CT等。

(1)普通X线检查:胸部X线透视和拍片,方法简便,容易发现肺部肿块,是肺癌诊断不可缺少的基本检查。骨骼、鼻咽和鼻窦的肿瘤诊断也需x线检查参考。消化道肿瘤需做胃肠钡剂照影x线检查。泌尿道和胆道造影有助于泌尿系肿瘤和胆道肿瘤的诊断。乳腺肿瘤的早期诊断也离不开x线检查。此外,各部位的血管造影也要行x线检查。

(2)B型超声检查:能显示人体软组织的形态及活动状态,而且对人体无损伤、无痛苦、价格低廉、操作简便,是肿瘤初筛首选的诊断方法,尤其对肝、胰、胆囊、甲状腺和泌尿生殖系肿瘤颇有诊断价值。

(3)放射性核素检查:临床上常用的放射性核素有P-32、I-131、Au-198、In-113、Tc-99、Ga-67等,如用Au-198诊断肝癌,可在病灶部位显示出充盈缺损区或占位性病变;用Ga-67诊断肺癌,可在病灶处见到浓集的放射性“热区”。但核素检查并非是肿瘤唯一的特异型诊断,因为肝囊肿、肝脓肿也可以出现占位性病变,肺部炎症也可显示出放射性浓集的“热区”。因此,必须与临床其他检查配合,全面分析才能做出正确诊断。现在常用Tc-99做全身骨显像检查,能早期发现骨转移和原发性骨肿瘤。

(4)CT:解剖影像空间分辨率和对比分辨率高,横断面断层可避免影像的重叠,能够发现早期较小的肿瘤,特别是能够直接显示腹部实质脏器的解剖结构,例如胰腺癌临床诊断十分困难.有了CT之后,诊断率可大大提高。

(5)MRI:较CT的组织分辨率高,又能像核素检查那样进行机体生物化学代谢过程的监测,而且不需要造影剂即可观测血管甚至血流速度和方向。MRI对中枢神经系统、头颈部肿瘤、脊椎、四肢、骨关节及盆腔的肿瘤诊断效果更佳。对腹部如肝内占位病变的定性诊断,鉴别肿瘤的良、恶性优于CT和B超:MRI对区分肺门肿块与血管或淋巴结效果最佳,对肺癌侵犯纵隔、大血管和胸壁的诊断有价值,MR血管成像(MRA)是近年来新开发的技术,能够立体三维显示颅内血管和肺动咏系统。

(6)PET:是目前核医学最高档次的显像技术。临床检查主要用于肿瘤、心血管疾病、神经系统疾病等领域。由于癌组织大量摄取F-FDG(氟脱氧葡萄糖),因此PET可以早期、准确地诊断肿瘤,并能准确分期,诊断准确率高于现行其他技术。一般PET和CT是一起做的,叫PET-CT。输出的图像是PET和CT的融合图像。

2、 定位

(1)扫描摆位。这是获得精确放疗结果的第一步。在平面 CT 床上,将病人按放疗时要求的体位进行摆位,根据病人情况和部位进行体位固定。在立体定向放疗和要求获得高精度的放疗时,必须进行体位重复性高的体位固定。目前常用的体位固定器按精度顺序:头部依次为有创头架,无创头架,面网,真空枕等,体部依次为固定板,固定网,真空垫和体架等。

(2)画摆位线标记。在体位固定完成后,通过

CT 两侧的激光十字线在体侧中线附近皮肤上标记水平线,通过顶篷的激光十字线在体正中皮肤标记垂直线。体位标记线尽量画在靠近肿瘤区域。体位标记线是为了使病人体位在 CT 定位扫描和放疗时均保持一致,是提高放疗摆位和重复摆位精度的重要标记。在用固定板,真空枕或固定网进行体位固定时,需将激光定位十字线在皮肤的相应部位暴露出来,必须把激光定位线画在皮肤上,切不可画在体位固定器表面。

(3)CT扫描。按治疗计划的要求对相应部位进行 CT 扫描,最好采用增强扫描,扫描范围应比常规 CT 检查范围大,特别在立体定向放疗时,靶区上下两端的范围更需大一些,一般扫描层次要求 40 层以上,肿瘤区域层厚最好为2~5mm (具体根据肿瘤大小和定位精度要求而定)。为了获得较大的扫描范围又不至于使层次太多,可采用混合扫描技术,即病灶区层厚 2~5mm,以外区域逐步过渡为 5~10mm。扫描结束后,通过 CT 网络(Network)直接传送所有 CT 图像到治疗计划的工作站。

3、 靶区勾画

利用所有 CT 层面自动勾画体表外形,建立立体三维体表轮廓。然后逐层勾画靶区周围剂量限制性器官的轮廓。在立体定向放疗时,要求尽量勾画肿瘤周围重要脏器及射线可能涉及的重要器官的轮廓。靶区轮廓勾画是能否实现精确放疗的关键。因此不但要求有高质量的图像显示,还要求有高水平的肿瘤诊疗医生配合,根据肿瘤大小和形状在相应的各 CT 层面上勾画靶区轮廓。在肿瘤轮廓显现不清时,应在增强扫描图像或 CT/MRI 融合图像上进行轮廓勾画。靶区的勾画可在TPS上进行,也可在第三方勾画软件上进行。

4、 计划设计

肿瘤医生和物理师根据肿瘤和周围重要脏器之间在三维空间的相互关系设计合理的照射野。在 BEV 显示窗口调整射野大小。在设计立体多野计划时,尽量采用非共面多野照射。设计照射野的原则是使放射剂量高度集中在靶区,而使周围正常重要器官的照射量控制在剂量限制范围以内。

目前最常见的几大TPS(治疗计划系统)厂商是:飞利浦的Pinnacle、瓦里安的Eclipse和医科达的Monaco,近几年国内也有几家在做TPS,而且也做得挺不错的。

5、 计划评估

物理师按照临床医师的要求利用TPS计划系统设计射野及布野,设计完成后与临床医师反复讨论评估,利用DVH曲线和剂量曲线图等工具评价计 划优劣,最终确定最优的放疗计划。评估优化的目标是在保证肿瘤获得足够放疗剂量的同时,尽可能控制重要器官组织的照射剂量不超过其耐受剂量,从而保护重要器官组织的功能和患者生活质量。

一般计划评估在作完计划之后,在TPS系统上进行;当然可以在第三方系统中进行,如下图为深圳医诺(Yino)推出的高级计划评估系统APE。

6、 放疗计划验证

放射疗计划执行之前,应进行放疗中心位置验证、射野验证和剂量验证。放疗中心位置验证是依照计划系统给出的肿瘤中心位置,找出对应的体表标志作为放疗摆位时的依据。射野验证是指在确定放疗中心位置后,利用模拟机拍摄X光片,或在直线加速器下使用电子射野验证系统进行拍摄验证片,核对中心位置、每个照射野形状、入射角和射野大小等是否正确,可将误差降到最低。剂量验证是由物理师通过人体仿真体模,核实体内所接受的射线照射剂量与计划系统所设计的照射剂量是否一致。

7、 进行治疗

真正到了放射治疗这一步,只需要将治疗计划发送到治疗机,并按照设计的计划进行治疗即可,这一步要求治疗技师的参与。而对于计划系统,一般情况都是一类治疗机对应都有自己的TPS(计划系统),而且从安全角度一般也不敢让治疗机接其他厂商的TPS系统。

另外一般的治疗都是分次进行的,如,每周5次,总共30次;有些还是治疗间隔,如,每周3次,隔一天做一次等等。

8、 院后随访

随访是指医院或医疗保健机构对曾在医院就诊的病人以通讯或其他的方式,进行定期了解患者病情的变化和指导患者的康复的一种观察方法。随访往往从患者出院以后不久开始,一般每3个月至1年一次,视不同疾病的病期和治疗方法而定。在近期随访中,医生主要观察病人治疗的效果及某些反应,并根据随访的情况和复查结果来调整用药;远期随访可获得某一治疗方案的长期效果、远期并发症及生存时间,有利于筛选出更有效的治疗方法,并可建立资料档案,掌握某一疾病的发展规律,有助于医学科学的发展。

随访的流程,每个医院稍有不同,但大体一致。下图为广州某医院的随访工作流程:

如果不正确之处,请指正!

pet-ct是什么?具体有什么用处?希望能解释的详细点……

PET-CT将CT与PET融为一体,由CT提供病灶的精确解剖定位,而PET提供病灶详尽的功能与代谢等分子信息,具有灵敏、准确、特异及定位精确等特点,一次显像可获得全身各方位的断层图像,可一目了然的了解全身整体状况,达到早期发现病灶和诊断疾病的目的。PET-CT的出现是医学影像学的又一次革命,受到了医学界的公认和广泛关注。

PET/CT目前是全球最高端的医学影像诊断设备,堪称“现代医学高科技之冠”。

PET(Positron Emission Computed Tomography,PET)的全称为正电子发射计算机断层扫描。它是一种最先进的医学影像技术,PET技术是目前唯一的用解剖形态方式进行功能、代谢和受体显像的技术,具有无创伤性的特点。是目前临床上用以诊断和指导治疗肿瘤最佳手段之一。

一 、PET显像的基本原理

PET是英文 Positron Emission Tomograpny的缩写。其临床显像过程为:将发射正电子的放射性核素(如F-18等)标记到能够参与人体组织血流或代谢过程的化合物上,将标有带正电子化合物的放射性核素注射到受检者体内。让受检者在PET的有效视野范围内进行 PET显像。放射核素发射出的正电子在体内移动大约1mm后与组织中的负电子结合发生湮灭辐射。产生两个能量相等(511 KeV)、方向相反的γ光子。由于两个光子在体内的路径不同,到达两个探测器的时间也有一定差别,如果在规定的时间窗内(一般为 0-15 us),探头系统探测到两个互成180度(士0.25度)的光子时。即为一个符合事件,探测器便分别送出一个时间脉冲,脉冲处理器将脉冲变为方波,符合电路对其进行数据分类后,送人工作站进行图像重建。便得到人体各部位横断面、冠状断面和矢状断面的影像。PET系统的主要部件包括机架、环形探测器、符合电路、检查床及工作站等。探测系统是整个正电子发射显像系统中的主要部分,它采用的块状探测结构有利于消除散射、提高计数率。许多块结构组成一个环,再由数十个环构成整个探测器。每个块结构由大约36个锗酸铋(BGO)小晶体组成,晶体之后又带有2对(4个)光电倍增管(PMT)(请看图1)。BGO晶体将高能光子转换为可见光.PMT将光信号转换成电信号,电信号再被转换成时间脉冲信号,探头层间符合线路对每个探头信号的时间耦合性进行检验判定,排除其它来源射线的干扰,经运算给出正电子的位置,计算机采用散射、偶然符合信号校正及光子飞行时间计算等技术,完成图像重建。重建后的图像将PET的整体分辨率提高到2 mm左右。PET采用符合探测技术进行电子准直校正,大大减少了随机符合事件和本底,电子准直器具有非常高的灵敏度(没有铅屏蔽的影响)和分辨率。另外.BGO晶体的大小与灵敏度成正相关性。块状结构的PET探头。能进行2D或3D采集。2D采集是在环与环之间隔置铅板或钨板,以减少散射对图像质量的影响 2D图像重建时只对临近几个环(一般2-3个环)内的计数进行符合计算,其分辨率高,计数率低;3D数据采集则不同。取消了环与环之间的间隔, 在所有环内进行符合计算,明显地提高了计数率,但散射严重, 图像分辨率也较低,且数据重组时要进行大量的数据运算。两种采集方法的另一个重要区别是灵敏度不同,3D采集的灵敏度在视野中心为最高。

二 、多层螺旋CT的工作原理

CT的基本原理是图像重建, 根据人体各种组织(包括正常和异常组织)对X射线吸收不等这一特性, 将人体某一选定层面分成许多立方体小块(也称体素)X射线穿过体素后, 测得的密度或灰度值称为象素。X射线束穿过选定层面, 探测器接收到沿X射线束方向排列的各体素吸收X射线后衰减值的总和,为已知值,形成该总量的各体素X射线衰减值为未知值,当X射线发生源和探测器围绕人体做圆弧或圆周相对运动时。用迭代方法求出每一体素的X射线衰减值并进行图像重建,得到该层面不同密度组织的黑白图像。螺旋CT突破了传统CT的设计,采用滑环技术, 将电源电缆和一些信号线与固定机架内不同金属环相连运动的X射线管和探测器滑动电刷与金属环导联。球管和探测器不受电缆长度限制,沿人体长轴连续匀速旋转, 扫描床同步匀速递进(传统 CT扫描床在扫描时静止不动),扫描轨迹呈螺旋状前进,可快速、不间断地完成容积扫描。 多层螺旋CT的特点是探测器多层排列。是高速度、高空间分辨率的最佳结合。多层螺旋CT的宽探测器采用高效固体稀土陶瓷材料制成。每个单元只有 0.5、1或 1.25 mm厚, 最多也只有5 mm厚 薄层扫描探测器的光电转换效率高达99%能连续接收X射线信号。余辉极短, 且稳定性好。多层螺旋CT能高速完成较大范围的容积扫描, 图像质量好, 成像速度快,具有很高的纵向分辨率和很好的时间分辨率。大大拓宽了CT的应用范围,与单层螺旋CT相比。采集同样体积的数据, 扫描时间大为缩短,在不增加X射线剂量的情况下, 每15 S左右就能扫描一个部位;5S内可完成层厚为3 mm的整个胸部扫描;采用较大的螺距 P值,一次屏气20 S,可以完成体部扫描;同样层厚, 同样时间内, 扫描范围增大4倍。扫描的单位时间覆盖率明显提高, 病人接受的射线剂量明显减少,x线球管的使用寿命明显延长,同时,节省了对比剂用量,提高了低对比分辨率和空间分辨率,明显减少了噪声、伪影及硬化效应。另外,还可根据不同层厚需要自动调节X射线锥形线束的宽度,经过准直的X射线束聚焦在相应数目的探测器上 探测器通过电子开关与四个数据采集系统(DAS)相连。每个DAS能独立采集完成一套图像, 按照DAS与探测器匹配方式不同。通过电子切换可以选择性地获得1层、2层或4层图像,每层厚度可自由选择(0.5、1.0、1.25 mm或 5、10 mm。采集的数据既可做常规图像显示, 也可在工作站进行后处理, 完成三维立体重建、多层面重建、器官表面重建等,并能实时或近于实时显示。另外.不同角度的旋转、不同颜色的标记,使图像更具立体感 更直观、逼真。仿真内窥镜、三维CT血管造影技术也更加成熟和快捷。

三 、 PET-CT的图像融合

PET与CT两种不同成像原理的设备同机组合,不是其功能的简单相加。而是在此基础上进行图像融合,融合后的图像既有精细的解剖结构又有丰富的生理.生化功能信息 能为确定和查找肿瘤及其它病灶的精确位置 定量、定性诊断提供依据。并可用X线对核医学图像进行衰减校正。 PET-CT的核心是融合,图像融合是指将相同或不同成像方式的图像经过一定的变换处理 使它们的空间位置和空间坐标达到匹配,图像融台处理系统利用各自成像方式的特点对两种图像进行空间配准与结合, 将影像数据注册后合成为一个单一的影像。 PET-CT同机融合(又叫硬件融合、非影像对位)具有相同的定位坐标系统,病人扫描时不必改变位置,即可进行 PET-CT同机采集, 避免了由于病人移位所造成的误差。采集后两种图像不必进行对位、转换及配准,计算机图像融合软件便可方便地进行2D、3D的精确融合,融合后的图像同时显示出人体解剖结构和器官的代谢活动, 大大简化了整个图像融合过程中的技术难度、避免了复杂的标记方法和采集后的大量运算, 并在一定程度上解决了时间、空间的配准问题, 图像可靠性大大提高。 PET在成像过程中由于受康普顿效应、散射、偶然符合事件、死时间等衰减因素的影响,采集的数据与实际情况并不一致, 图像质量失真,必须采用有效措施进行校正,才能得到更真实的医学影像。同位素校正得到的穿透图像系统分辨率一般为12 mm、而 X线方法的穿透图像系统分辨率为1mm左右 图像信息量远大于同位素方法。用 CT图像对 PET进行衰减校正 使 PET图像的清晰度大为提高,图像质量明显优于同位素穿透源校正的效果(请看图2), 分辨率提高了 25%以上,校正效率提高了 30%,且易于操作。校正后的 PET图像与 CT图像进行融合, 经信息互补后得到更多的解剖结构和生理功能关系的信息 对于肿瘤病人手术和放射治疗定位具有极其重要的临床意义。

临床应用

PET-CT提供的预测和治疗处理信息比单独 PET和 CT多得多,它超越了单独PET和单独CT的现有领域,既能完成超高档 CT的所有功能,又能完成 PET的功能——20 min能完成全身 CT扫描, 比单纯 PET的效率提高了 60%以上,还能提供比 CT更为准确、快速的心肌和脑血流灌注功能图像。 PET-CT融合图像能很好地描述疾病对生物化学过程的作用, 鉴别生理和病理性摄取, 能在疾病得到解剖证据前检测出早期发病征兆,甚至能探测到小于2 cm的亚临床型的肿瘤,为临床正确确定放疗的计划靶区(临床靶区与生物靶区相结合)、检测治疗过程中药物和放疗效果提供最佳的治疗方案和筛选最有效治疗药物。解剖定位加功能显像对于病变部位

父亲昨天做了放疗前的CT定位,但告知要至少两周后才能做好计划开始放疗,CT定位为什么要这么长的时间啊?

放疗一般分为三种:一是普通放疗,不需要CT模拟定位,在模拟机下定位即可,定好位即可开始放疗。

二是三维适形放疗,在模拟机下做网(白色的塑料网,根据病灶部位,分为头网、头颈肩网和体网,这种网属于自费),然后根据病情要求做平扫CT定位或强化CT定位(这种CT是在放疗科做的,不是去放射科,不出报告和片子,一般情况下不报销或报的很少),定位后放疗技师会将扫描的片子传到医生画靶区的电脑程序里,医生根据病情及临床经验勾画靶区(靶区就是实际病人放疗时要照射的范围)。一般的CT是5mm一层,医生需要一层一层的画,所以需要些时间。画好以后,要经过主任医师的审核,签字后提交给物理师,由其做具体的物理计划,这种计划做起来很复杂,需要计算靶区内每个点的最大受量,并结合医生所给出的治疗量,再综合计算出危机器官的最大耐受量和靶区的最大治疗量,一般需要3-5天的时间。等放疗计划做完后需要病人再次去放疗中心做复位,完成后才可安排放疗。

三是调强放疗,这种跟第二种的程序差不多,但放疗计划更精确,目的是为了在更好的保护危机器官的同时,最大程度的提高靶区计量,与第二种不同的是等待计划的时间更长,一般需要1-2周。等计划出来后复位,多加一步验证,验证合格后证明此计划与病人当前情况完全吻合,保证其精确性,此时才可以传输计划,安排放疗。

当然每个医院的资源和医生各有不同,时间上不会都一样。您所说的2周,如果是调强放疗的话,也不算慢了。我在放疗中心待了两年的时间,并没有发现有医生会故意拖延时间,反而会有时加班给做计划。医生画靶区如果要仔细,当然会多花些时间,您也不希望您的医生草草了事吧,物理师那边也是一样,他的计划做得越精确,您所接受的放疗也越精确,这对您来说是好的。

如果您是在不放心,可以等1周左右给您的主管大夫打个电话,问问计划做的怎么样了,如果真的很着急,可以婉转的说一下想要治疗的迫切心态。我想医生们也都会理解的。

PET在医学上的用途?

PET在医学上是目前惟一可在活体上显示生物分子代谢、受体及神经介质活动的新型影像技术,现已广泛用于多种疾病的诊断与鉴别诊断、病情判断、疗效评价、脏器功能研究和新药开发等方面。

1、PET能够鉴别恶性肿瘤与良性肿瘤及正常组织,同时也可对复发的肿瘤与周围坏死及瘢痕组织加以区分,现多用于肺癌、乳腺癌、大肠癌、卵巢癌、淋巴瘤,黑色素瘤等的检查,其诊断准确率在90%以上。

2、可用于癫痫灶定位、老年性痴呆早期诊断与鉴别、帕金森病病情评价以及脑梗塞后组织受损和存活情况的判断。

3、能检查出冠心病心肌缺血的部位、范围,并对心肌活力准确评价,确定是否需要溶栓治疗、安放冠脉支架或冠脉搭桥手术。能通过对心肌血流量的分析,结合药物负荷,测定冠状动脉储备能力,评价冠心病的治疗效果。

扩展资料:

PET的优点:

(1)灵敏度高。PET是一种反映分子代谢的显像,当疾病早期处于分子水平变化阶段,病变区的形态结构尚未呈现异常,MRI、CT检查还不能明确诊断时,PET检查即可发现病灶所在,并可获得三维影像,还能进行定量分析,达到早期诊断,这是目前其它影像检查所无法比拟的。

(2)特异性高。MRI、CT检查发现脏器有肿瘤时,是良性还是恶性很难做出判断,但PET检查可以根据恶性肿瘤高代谢的特点而做出诊断。

(3)全身显像。PET一次性全身显像检查便可获得全身各个区域的图像。

(4)安全性好。PET检查需要的核素有一定的放射性,但所用核素量很少,而且半衰期很短(短的在12分钟左右,长的在120分钟左右),经过物理衰减和生物代谢两方面作用,在受检者体内存留时间很短。一次PET全身检查的放射线照射剂量远远小于一个部位的常规CT检查,因而安全可靠。

参考资料来源:百度百科-pet (正电子发射型计算机断层显像)

  • 评论列表:
  •  访客
     发布于 2022-07-12 18:40:09  回复该评论
  • 球最高端的医学影像诊断设备,堪称“现代医学高科技之冠”。 PET(Positron Emission Computed Tomography,PET)的全称为正电子发射计算机断层扫描。它是一种最先进的医学影像技术,PET技术是目前唯一的用解剖形态方式进行功能、代谢和受
  •  访客
     发布于 2022-07-12 22:36:16  回复该评论
  • 临床上用以诊断和指导治疗肿瘤最佳手段之一。一 、PET显像的基本原理 PET是英文 Positron Emission Tomograpny的缩写。其临床显像过程为:将发射正电子的放射性核素(如F-18等)标记到能够参与人体组织血流或代谢过程的
  •  访客
     发布于 2022-07-12 18:22:17  回复该评论
  • 对应都有自己的TPS(计划系统),而且从安全角度一般也不敢让治疗机接其他厂商的TPS系统。另外一般的治疗都是分次进行的,如,每周5次,总共30次;有些还是治疗间隔,如,每周3次,隔一天做一次等等。8、 院后随访随访是指医
  •  访客
     发布于 2022-07-12 19:24:45  回复该评论
  • 比。采集同样体积的数据, 扫描时间大为缩短,在不增加X射线剂量的情况下, 每15 S左右就能扫描一个部位;5S内可完成层厚为3 mm的整个胸部扫描;采用较大的螺距 P值,一次屏气20 S,可以完成体部扫描;同样层厚, 同样时间内,
  •  访客
     发布于 2022-07-12 17:53:20  回复该评论
  • 1年一次,视不同疾病的病期和治疗方法而定。在近期随访中,医生主要观察病人治疗的效果及某些反应,并根据随访的情况和复查结果来调整用药;远期随访可获得某一治疗方案的长期效果、远期并发症及生存时

发表评论:

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

Copyright Your WebSite.Some Rights Reserved.