生活指南——让生活变得更简单

德国零点定位拉钉生产公司的简单介绍

课程:

跳头拉钉是什么拉钉?凯仕特五金怎么生产

跳头拉钉介绍: 跳头拉钉又叫掉头拉钉, 双面沉头拉钉和一种,英文名:Pull-Thru (PT) Rivets,中文又叫拉通铆钉,无头拉钉,跳头拉钉,抽空拉钉等,特点是拉铆完后,没有钉头脱落,产品的两个铆接面都比较平整,现被广泛用于IT行业的通讯机柜上面!非常适用于空间比较有限的薄板铆接! 特点和优点: �6�1 双沉头设置 o 材料两侧必需要打沉孔 o 插入是可以逆转的,提高铆接工具访问 �6�1 独特的“掉头”心轴 o 无芯钉头保持在应用程序中的任何地方 o 一致的夹紧力 o 严格的径向集提供结构刚度增加 �6�1 高速自动化 o POP铆钉演示有利于循环时间,以最快的速度为2秒 �6�1 凯仕特五金现独家生产!

迈克尔逊干涉仪

很努力的在找。。。

给个满意吧。。 迈克尔逊干涉仪,是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。它是利用分振幅法产生双光束以实现干涉。通过调整该干涉仪,可以产生等厚干涉条纹,也可以产生等倾干涉条纹。主要用于长度和折射率的测量,若观察到干涉条纹移动一条,便是M2的动臂移动量为λ/2,等效于M1与M2之间的空气膜厚度改变λ/2。在近代物理和近代计量技术中,如在光谱线精细结构的研究和用光波标定标准米尺等实验中都有着重要的应用。利用该仪器的原理,研制出多种专用干涉仪。

。。。。。。。。。。。。。。。。。我就是传说中的分界线。。。。。。。。。。。。。。。。。在一台标准的迈克耳孙干涉仪中从光源到光检测器之间存在有两条光路:一束光被光学分束器(例如一面半透半反镜)反射后入射到上方的平面镜后反射回分束器,之后透射过分束器被光检测器接收;另一束光透射过分束器后入射到右侧的平面镜,之后反射回分束器后再次被反射到光检测器上。注意到两束光在干涉过程中穿过分束器的次数是不同的,从右侧平面镜反射的那束光只穿过一次分束器,而从上方平面镜反射的那束光要经过三次,这会导致两者光程差的变化。对于单色光的干涉而言这无所谓,因为这种差异可以通过调节干涉臂长度来补偿;但对于复色光而言由于在介质中不同色光存在色散,这往往需要在右侧平面镜的路径上加一块和分束器同样材料和厚度的补偿板,从而能够消除由这个因素导致的光程差。

在干涉过程中,如果两束光的光程差是光波长的整数倍(0,1,2……),在光检测器上得到的是相长的干涉信号;如果光程差是半波长的奇数倍(0.5,1.5,2.5……),在光检测器上得到的是相消的干涉信号。当两面平面镜严格垂直时为等倾干涉,其干涉光可以在屏幕上接收为圆环形的等倾条纹;而当两面平面镜不严格垂直时是等厚干涉,可以得到以等厚交线为中心对称的直等厚条纹。在光波的干涉中能量被重新分布,相消干涉位置的光能量被转移到相长干涉的位置,而总能量总保持守恒。

。。。。。。。。。。。。。。。。。。我依旧是分界线。。。。。。。。。。。。。。。。。。。 这个主要是测量钠双线的波长差。

【实验目的】

1.了解迈克尔逊干涉仪的干涉原理和迈克尔逊干涉仪的结构,学习其调节方法。

2.调节观察干涉条纹,测量激光的波长。

3.测量钠双线的波长差。

4.练习用逐差法处理实验数据。

【实验仪器】

迈克尔逊干涉仪,钠灯,针孔屏,毛玻璃屏,多束光纤激光源(HNL

55700)。

【实验原理】

1.迈克尔逊干涉仪

图1是迈克尔逊干涉仪实物图。图2是迈克尔逊干涉仪的光路示意图,图中M1和M2是在相互垂直的两臂上放置的两个平面反射镜,其中M1是固定的;M2由精密丝杆控制,可沿臂轴前、后移动,移动的距离由刻度转盘(由粗读和细读2组刻度盘组合而成)读出。在两臂轴线相交处,有一与两轴成45°角的平行平面玻璃板G1,它的第二个平面上镀有半透(半反射)的银膜,以便将入射光分成振幅接近相等的反射光⑴和透射光⑵,故G1又称为分光板。G2也是平行平面玻璃板,与G1平行放置,厚度和折射率均与G1相同。由于它补偿了光线⑴和⑵因穿越G1次数不同而产生的光程差,故称为补偿板。

从扩展光源S射来的光在G1处分成两部分,反射光⑴经G1反射后向着M2前进,透射光⑵透过G1向着M1前进,这两束光分别在M2、M1上反射后逆着各自的入射方向返回,最后都达到E处。因为这两束光是相干光,因而在E处的观察者就能够看到干涉条纹。

由M1反射回来的光波在分光板G1的第二面上反射时,如同平面镜反射一样,使M1在M2附近形成M1的虚像M1′,因而光在迈克尔逊干涉仪中自M2和M1的反射相当于自M2和M1′的反射。由此可见,在迈克尔逊干涉仪中所产生的干涉与空气薄膜所产生的干涉是等效的。

当M2和M1′平行时(此时M1和M2严格互相垂直),将观察到环形的等倾干涉条纹。一般情况下,M1和M2形成一空气劈尖,因此将观察到近似平行的干涉条纹(等厚干涉条纹)。

2.单色光波长的测定

用波长为λ的单色光照明时,迈克尔逊干涉仪所产生的环形等倾干涉圆条纹的位置取决于相干光束间的光程差,而由M2和M1反射的两列相干光波的光程差为

Δ=2dcos

i

(1)

其中i为反射光⑴在平面镜M2上的入射角。对于第k条纹,则有

2dcos

ik=kλ

(2)

当M2和M1′的间距d逐渐增大时,对任一级干涉条纹,例如k级,必定是以减少cosik的值来满足式(2)的,故该干涉条纹间距向ik变大(cos

ik值变小)的方向移动,即向外扩展。这时,观察者将看到条纹好像从中心向外“涌出”,且每当间距d增加λ/2时,就有一个条纹涌出。反之,当间距由大逐渐变小时,最靠近中心的条纹将一个一个地“陷入”中心,且每陷入一个条纹,间距的改变亦为λ/2。

因此,当M2镜移动时,若有N个条纹陷入中心,则表明M2相对于M1移近了

Δd=N

(3)

反之,若有N个条纹从中心涌出来时,则表明M2相对于M1移远了同样的距离。

如果精确地测出M2移动的距离Δd,则可由式(3)计算出入射光波的波长。

3.测量钠光的双线波长差Δλ

钠光2条强谱线的波长分别为λ1=589.0

nm和λ2=589.6

nm,移动M2,当光程差满足两列光波⑴和⑵的光程差恰为λ1的整数倍,而同时又为λ2的半整数倍,即

Δk1λ1=(k2+)λ2

这时λ1光波生成亮环的地方,恰好是λ2光波生成暗环的地方。如果两列光波的强度相等,则在此处干涉条纹的视见度应为零(即条纹消失)。那么干涉场中相邻的2次视见度为零时,光程差的变化应为

ΔL=kλ1=(k+1)λ2

(k为一较大整数)

由此得

λ1-λ2==

于是

Δλ=λ1-λ2==

式中λ为λ1、λ2的平均波长。

对于视场中心来说,设M2镜在相继2次视见度为零时移动距离为Δd,则光程差的变化ΔL应等于2Δd,所以

Δλ=

(4)

对钠光=589.3

nm,如果测出在相继2次视见度最小时,M2镜移动的距离Δd

,就可以由式(4)求得钠光D双线的波长差。

4.点光源的非定域干涉现象

激光器发出的光,经凸透镜L后会聚S点。S点可看做一点光源,经G1(G1未画)、M1、M2′的反射,也等效于沿轴向分布的2个虚光源S1′、S2′所产生的干涉。因S1′、S2′发出的球面波在相遇空间处处相干,所以观察屏E放在不同位置上,则可看到不同形状的干涉条纹,故称为非定域干涉。当E垂直于轴线时(见图3),调整M1和M2的方位也可观察到等倾、等厚干涉条纹,其干涉条纹的形成和特点与用钠光照明情况相同,此处不再赘述。

【实验内容与步骤】

1.观察扩展光源的等倾干涉条纹并测波长

①点燃钠光灯,使之与分光板G1等高并且位于沿分光板和M1镜的中心线上,转动粗调手轮,使M1镜距分光板G1的中心与M1镜距分光板G1的中心大致相等(拖板上的标志线在主尺32

cm

位置)。

②在光源与分光板G1之间插入针孔板,用眼睛透过G1直视M2镜,可看到2组针孔像。细心调节M1镜后面的

3

个调节螺钉,使

2

组针孔像重合,如果难以重合,可略微调节一下M2镜后的3个螺钉。当2组针孔像完全重合时,就可去掉针孔板,换上毛玻璃,将看到有明暗相间的干涉圆环,若干涉环模糊,可轻轻转动粗调手轮,使M2镜移动一下位置,干涉环就会出现。

③再仔细调节M1镜的2个拉簧螺丝,直到把干涉环中心调到视场中央,并且使干涉环中心随观察者的眼睛左右、上下移动而移动,但干涉环不发生“涌出”或“陷入”现象,这时观察到的干涉条纹才是严格的等倾干涉。

④测钠光D双线的平均波长。先调仪器零点,方法是:将微调手轮沿某一方向(如顺时针方向)旋至零,同时注意观察读数窗刻度轮旋转方向;保持刻度轮旋向不变,转动粗调手轮,让读数窗口基准线对准某一刻度,使读数窗中的刻度轮与微调手轮的刻度轮相互配合。

⑤始终沿原调零方向,细心转动微调手轮,观察并记录每“涌出”或“陷入”50个干涉环时,M1镜位置,连续记录6次。

⑥根据式(5-8),用逐差法求出钠光D双线的平均波长,并与标准值进行比较。

2.观察等厚干涉和白光干涉条纹

①在等倾干涉基础上,移动M2镜,使干涉环由细密变粗疏,直到整个视场条纹变成等轴双曲线形状时,说明M2与M1′接近重合。细心调节水平式垂直拉簧螺丝,使M2与M1′有一很小夹角,视场中便出现等厚干涉条纹,观察和记录条纹的形状、特点。

②用白炽灯照明毛玻璃(钠光灯不熄灭),细心缓慢地旋转微动手轮,M2与M1′达到“零程”时,在M2与M1′的交线附近就会出现彩色条纹。此时可挡住钠光,再极小心地旋转微调手轮找到中央条纹,记录观察到的条纹形状和颜色分布。

3.测定钠光D双线的波长差

①以钠光为光源调出等倾干涉条纹。

②移动M2镜,使视场中心的视见度最小,记录M2镜的位置;沿原方向继续移动M2镜,使视场中心的视见度由最小到最大直至又为最小,再记录M2镜位置,连续测出6个视见度最小时M2镜位置。

③用逐差法求Δd的平均值,计算D双线的波长差。

4.点光源非定域干涉现象观察

方法步骤自拟。

迈克尔逊干涉仪系精密光学仪器,使用时应注意防尘、防震;不能触摸光学元件光学表面;不要对着仪器说话、咳嗽等;测量时动作要轻、要缓,尽量使身体部位离开实验台面,以防震动。

这种是什么拉钉?

这种拉钉叫抽芯铆钉,也叫抽芯拉铆钉,它可以提高生产效率的,钣金连接的首选方式,从德国传过来的,国内的钣金连接正在被这种铆接方式逐步取代。

国产零点定位系统有哪些做的还可以

国产零点定位系统有哪些做的还可以

1、美国全球定位系统(GPS)

GPS是一个全球性、全天候、全天时、高精度的导航定位和时间传递系统。空间部分由24颗卫星组成。它是一个军民两用系统,提供两个等级的服务。

美国政府为了加强其在全球导航市场的竞争力,撤销对GPS的SA干扰技术,标准定位服务定位精度双频工作时实际可提高到20米、授时精度提高到40纳秒,以此抑制其他国家建立与其平行的系统,并提倡以GPS和美国政府的增强系统作为国际使用的标准。

2、俄罗斯全球导航卫星系统 俄罗斯要用20年时间发射76颗GLONASS卫星。1995年完成24颗中高度圆轨道卫星加1颗备用卫星组网,耗资30多亿美元,由俄罗斯国防部控制。GLONASS空间部分也由24颗卫星组成。GLONASS未达到GPS的导航精度。其应用普及情况远不及GPS。前一时期由于经济困难无力补网,原来在轨卫星陆续退役,目前在轨道上只有6颗星可用,不能独立组网,只能与GPS联合使用。

3、欧洲伽利略导航卫星系统计划

欧洲1999年初正式推出伽利略导航卫星系统计划。该方案由21颗以上中高度圆轨道核心星座组成,另加3颗覆盖欧洲的地球静止轨道卫星,辅以GPS和本地差分增强系统,首先满足欧洲需求,位置精度达几米。计划在2001年4月5日欧盟交通部长会议上获得批准,确定30颗卫星总投资为35亿欧元。预计系统于2008年投入运行。伽利略系统独立于GPS,频段分开,但将与GPS系统兼容和相互操作。根据欧委会的文件,伽利略虽是民间系统,但仍受控使用,采取反欺骗、反滥用和反干扰措施,在战时可以对敌方关闭。

  • 评论列表:
  •  访客
     发布于 2022-08-23 19:45:21  回复该评论
  • 美国政府为了加强其在全球导航市场的竞争力,撤销对GPS的SA干扰技术,标准定位服务定位精度双频工作时实际可提高到20米、授时精度提高到40纳秒,以此抑制其他国家建立与其平行的系统,并提倡以GPS和美国政府的增强系统作为国际使用的标准。2、俄罗斯全球导航卫星系统 俄罗斯要用20年时
  •  访客
     发布于 2022-08-23 17:39:54  回复该评论
  • M1′的反射。由此可见,在迈克尔逊干涉仪中所产生的干涉与空气薄膜所产生的干涉是等效的。当M2和M1′平行时(此时M1和M2严格互相垂直),将观察到环形的等倾干涉条纹。一般情况下
  •  访客
     发布于 2022-08-24 03:15:23  回复该评论
  • 到光检测器之间存在有两条光路:一束光被光学分束器(例如一面半透半反镜)反射后入射到上方的平面镜后反射回分束器,之后透射过分束器被光检测器接收;另一束光透射过分束器后入射到右侧的平面镜
  •  访客
     发布于 2022-08-23 18:10:17  回复该评论
  • 。。。。。。。。。。。在一台标准的迈克耳孙干涉仪中从光源到光检测器之间存在有两条光路:一束光被光学分束器(例如一面半透半反镜)反射后入射到上方的平面镜后反射回分束器,之后透射过分束器被光检测器接收;另一束光透射过分束器后入射到右侧的平面镜,之后反射回分束器后再次被反射到光检测器上

发表评论:

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

Copyright Your WebSite.Some Rights Reserved.