课程:
锅炉过热器爆管的现象和原因?
1、长期过热
1.1失效机理
长期过热是指管壁温度长期处于设计温度以上而低于材料的下临界温度,超温幅度不大但时间较长,锅炉管子发生碳化物球化,管壁氧化减薄,持久强度下降,蠕变速度加快,使管径均匀胀粗,最后在管子的最薄弱部位导致脆裂的爆管现象。这样,管子的使用寿命便短于设计使用寿命。超温程度越高,寿命越短。在正常状态下,长期超温爆管主要发生在高温过热器的外圈和高温再热器的向火面。在不正常运行状态下,低温过热器、低温再热器的向火面均可能发生长期超温爆管。长时超温爆管根据工作应力水平可分为三种:高温蠕变型、应力氧化裂纹型、氧化减薄型。
1.2产生失效的原因
(1)管内汽水流量分配不均;
(2)炉内局部热负荷偏高;
(3)管子内部结垢;
(4)异物堵塞管子;
(5)错用材料;
(6)最初设计不合理。
1.3.故障位置
(1)高温蠕变型和应力氧化裂纹型主要发生在高温过热器的外圈的向火面;在不正常的情况下,低温过热器也可能发生;
(2)氧化减薄型主要发生在再热器中。
1.4 爆口特征
长期过热爆管的破口形貌,具有蠕变断裂的一般特性。管子破口呈脆性断口特征。爆口粗糙,边缘为不平整的钝边,爆口处管壁厚度减薄不多。管壁发生蠕胀,管径胀粗情况与管子材料有关,碳钢管径胀粗较大。20号钢高压锅炉低温过热器管破裂,最大胀粗值达管径的15%,而12CrMoV钢高温过热器管破裂只有管径5%左右的胀粗。
(1)高温蠕变型
a.管子的蠕胀量明显超过金属监督的规定值,爆口边缘较钝;
b.爆口周围氧化皮有密集的纵向裂纹,内外壁氧化皮比短时超温爆管厚,超温程度越低,时间越长,则氧化皮越厚和氧化皮的纵向裂纹分布的范围也越广;
c.在爆口周围的较大范围内存在着蠕变空洞和微裂纹;
d.向火侧管子表面已完全球化;
e.弯头处的组织可能发生再结晶;
f.向火侧和背火侧的碳化物球化程度差别较大,一般向火侧的碳化物己完全球化。
(2)应力氧化裂纹型
a.管子的蠕胀量接近或低于金属监督的规定值,爆口边缘较钝,呈典型的厚唇状;
b.靠近爆口的向火侧外壁氧化层上存在着多条纵向裂纹,分布范围可达整个向火侧。内外壁氧化皮比短时超温爆管时的氧化皮厚;
c.纵向应力氧化裂纹从外壁向内壁扩展,裂纹尖端可能有少量空洞;
d.向火侧和背火侧均发生严重球化现象,并且管材的强度和硬度下降;
e.管子内壁和外壁的氧化皮发生分层;
f.燃烧产物中的S、Cl、Mn、Ca等元素在外壁氧化层沉积和富集。
(3)氧化减薄型
a.管子向火侧、背火侧的内外壁均产生厚度可达1.0~1.5mm的氧化皮;
b.管壁严重减薄,仅为原壁厚的1/3~l/8 ;
c.内、外壁氧化皮均分层,为均匀氧化。内壁氧化皮的内层呈环状条纹;
d.向火侧组织己经完全球化,背火侧组织球化严重,并且强度和硬度下降;
e.燃烧产物中的S、Cl、 Mn、Ca等元素在外壁氧化层沉积和富集,促进外壁氧化。
1.5.防止措施
对高温蠕变型可通过改进受热面、使介质流量分配合理;改善炉内燃烧、防止燃烧中心偏高;进行化学清洗,去除异物、沉积物等方法预防。对应力氧化裂纹型因管子寿命已接近设计寿命,可将损坏的管子予以更换。对氧化减薄型应完善过热器的保护措施。
2、短期过热
2.1.失效机理
短期过热
2.2.产生失效的原因
(1)过热器管内工质的流量分配不均匀,在流量较小的管子内,工质对管壁的冷却能力较差,使管壁温度升高,造成管壁超温;
(2)炉内局部热负荷过高(或燃烧中心偏离),使附近管壁温度超过设计的允许值;
(3)过热器管子内部严重结垢,造成管壁温度超温;
(4)异物堵塞管子,使过热器管得不到有效的冷却;
(5)错用钢材。错用低级钢材也会造成短期过热,随着温度升高,低级钢材的许用应力迅速降低,强度不足而使管子爆破;
(6)管子内壁的氧化垢剥落而使下弯头处堵塞;
(7)在低负荷运行时,投入减温水不当,喷入过量,造成管内水塞,从而引起局部过热;
(8)炉内烟气温度失常。
2.3.故障位置
常发生在过热器的向火面直接和火焰接触及直接受辐射热的受热面管子上。
2.4.爆口形状
(1)爆口塑性变形大,管径有明显胀粗,管壁减薄呈刀刃状;
(2)一般情况下爆口较大,呈喇叭状;
(3)爆口呈典型的薄唇形爆破;
(4)爆口的微观为韧窝(断口由许多凹坑构成);
(5)爆口周围管子材料的硬度显著升高;
(6)爆口周围内、外壁氧化皮的厚度,取决于短时超温爆管前长时超温的程度,长时超温程度越严重,氧化皮越厚。
2.5.防止措施
预防短期过热的方法有改进受热面,使介质流量分配合理;稳定运行工况,改善炉内燃烧,防止燃烧中心偏离;进行化学清洗;去除异物、沉积物;防止错用钢材:发现错用及时采取措施。
3.磨损
3.1.失效机理
包括飞灰磨损、落渣磨损、吹灰磨损和煤粒磨损。以飞灰磨损为例进行分析。飞灰磨损是指飞灰中夹带Si02, Fe03, Al2O3等硬颗粒高速冲刷管子表面,使管壁减薄爆管。
3.2.产生失效的原因
(1)燃煤锅炉飞灰中夹带硬颗粒;
(2)烟速过高或管子的局部烟气速度过高(如积灰时烟气通道变小,提高了烟气流动速度;
(3)烟气含灰浓度分布不均,局部灰浓度过高。
3.3.故障位置
常发生在过热器烟气入口处的弯头、出列管子和横向节距不均匀的管子上。
3.4.爆口特征
(1)断口处管壁减薄,呈刀刃状;
(2)磨损表面平滑,呈灰色;
(3)金相组织不变化,管径一般不胀粗。
3.5.防止措施
通常采用减少飞灰撞击管子的数量、速度或增加管子的抗磨性来防止飞灰磨损,如:通过加屏等方法改变流动方向和速度场;加设装炉内除尘装置;杜绝局部烟速过高;在易磨损管子表面加装防磨盖板。还应选用适于煤种的炉型、改善煤粉细度、调整好燃烧、保证燃烧完全。
4、腐蚀疲劳(或汽侧的氧腐蚀)
4.1.失效机理
腐蚀疲劳主要是因为水的化学性质所引起的,水中氧含量和pH值是影响腐蚀疲劳的主要因素。管内的介质由于氧的去极化作用,发生电化学反应,在管内的钝化膜破裂处发生点蚀形成腐蚀介质,在腐蚀介质和循环应力(包括启停和振动引起的内应力)的共同作用下造成腐蚀疲劳爆管。
4.2.产生失效的原因
(1)弯头的应力集中,促使点蚀产生;
(2)弯头处受到热冲击,使弯头内壁中性区产生疲劳裂纹;
(3)下弯头在停炉时积水;
(4)管内介质中含有少量碱或游离的二氧化碳;
(5)装置启动及化学清洗次数过多。
4.3.故障位置
常发生在水侧,然后扩展到外表面。过热器的管弯头内壁产生点状或坑状腐蚀,主要在停炉时产生腐蚀疲劳。
4.4.爆口特征
(1)在过热器的管内壁产生点状或坑状腐蚀,典型的腐蚀形状为贝壳状;
(2)运行时腐蚀疲劳的产物为黑色磁性氧化铁,与金属结合牢固;停炉时,腐蚀疲劳的产物为砖红色氧化铁;
(3)点状和坑状腐蚀区的金属组织不发生变化;
(4)腐蚀坑沿管轴方向发展,裂纹是横断面开裂,相对宽而钝,裂缝处有氧化皮。
4.5.防止措施
防止氧腐蚀应注意停炉保护;新炉起用时,应进行化学清洗,去除铁锈和脏物,在内壁形成一层均匀的保护膜;运行中使水质符合标准,适当减小PH值或增加锅炉中氯化物和硫酸盐的含量。
5、应力腐蚀裂纹
5.1.失效机理
这是指在介质含氯离子和高温条件下,由于静态拉应力或残余应力作用产生的管子破裂现象。
5.2.产生失效的原因
(1)介质中含氯离子、高温环境和受高拉应力,这是产生应力腐蚀裂纹的三个基本条件;
(2)在湿空气的作用下,也会造成应力腐蚀裂纹;
(3)启动和停炉时,可能有含氯和氧的水团进入钢管;
(4)加工和焊接引起的残余应力引起的热应力。
5.3.故障位置
常发生在过热器的高温区管和取样管。
5.4.爆口特征
(1)爆口为脆性形貌,一般为穿晶应力腐蚀断口;
(2)爆口上可能会有腐蚀介质和腐蚀产物;
(3)裂纹具有树枝状的分叉特点,裂纹从蚀处产生,裂源较多。
5.5.防止措施
防止应力腐蚀裂纹应注意去除管子的残余应力;加强安装期的保护,注意停炉时的防腐;防止凝汽器泄漏,降低蒸汽中的氯离子和氧的含量。
6、热疲劳
6.1.失效机理
热疲劳是指炉管因锅炉启停引起的热应力、汽膜的反复出现和消失引起的热应力和由振动引起的交变应力作用而发生的疲劳损坏。
6.2.产生失效的原因
(1)烟气中的S、Na、V、Cl等物质促进腐蚀疲劳损坏;
(2)炉膛使用水吹灰,管壁温度急剧变化,产生热冲击;
(3)超温导致管材的疲劳强度严重下降;
(4)按基本负荷设计的机组改变为调峰运行。
6.3.故障位置
常发生在过热器高热流区域的管子外表面。
6.4.防止措施
防止热疲劳产生的措施有改变交变应力集中区域的部件结构;改变运行参数以减少压力和温度梯度的变化幅度;设计时应考虑间歇运行造成的热胀冷缩;避免运行时机械振动;调整管屏间的流量分配,减少热偏差和相邻管壁的温度;适当提高吹灰介质的温度,降低热冲击。
7.高温腐蚀
7.1.失效机理
Na2S04等低熔点化合物破坏管子外表面的氧化保护层,与金属部件相互作用,在界面上生成新的松散结构的氧化物,使管壁减薄,导致爆管。
7.2.产生失效的原因
(1)燃料中含有V、Na和S等低熔点化合物;
(2)局部烟温过高,腐蚀性的低熔点化合物粘附在金属表面,导致高温腐蚀;
(3)腐蚀区内的覆盖物、烟气中的还原性气体和烟气的直接冲刷,将促进高温腐蚀的产生。
7.3.故障位置
高温腐蚀常发生在过热器及吊挂和定位零件的向火侧外表面。
7.4爆口特征
(l)裂纹萌生于管子外壁,断口为脆性厚唇式;
(2)沿纵向开裂,在相当于时钟面10点和2点处有浅沟槽腐蚀坑,呈鼠啃状;
(3)外壁有明显减薄,但不均匀,无明显胀粗;
(4)外壁有氧化垢,呈鳄鱼皮花样,垢中含黄色、白色、褐色产物,垢较疏松,为熔融状沉积物,最内层氧化物为硬而脆的黑灰色。
7.5.防止措施
防止高温腐蚀的方法有控制局部烟温,防止低熔点腐蚀性化合物贴附在金属表面上;使烟气流程合理,尽量减少热偏差;在燃煤锅炉中加入CaSO4和MgSO4等附加剂;易发生高温腐蚀的区域采用表面防护层或设置挡板;除去管子表面的附着物。
8.异种金属焊接
8.1.失效机理及原因
焊接接头处因两种金属的蠕变强度不匹配,以及焊缝界面附近的碳近移,使异种金属焊接界面断裂失效。其中,两种金属的蠕变强度相差极大是异种金属焊接早期失效的主要原因。
8.2.故障位置
常发生在过热器出口两种金属的焊接接头处,当焊缝的蠕变强度相当于其中一种金属的蠕变强度时,断裂发生在另一种金属的焊缝界面上。
8.3.防止措施
稳定运行是减少异种金属焊接失效最关键的因素;当两种金属焊接时,在其中加入具有中间蠕变强度的过渡段,使焊缝界面两侧蠕变强度差值明显减少;在过渡段的两侧选用性质不同的焊条,使其分别与两种金属的性质相匹配。
9.质量控制失误
质量控制失误是指在制造、安装、运行中由于外界失误的因素所造成的损坏。质量控制失误的原因有:维修损伤;化学清理损伤;管材缺陷(管材金属不合格或错用管材);焊接缺陷等。加强电厂运行、检修及各种制度的管理是防止质量控制失误出现的有效手段
锅炉中水冷壁、过热器、省煤器、空气预热器作用?
1、水冷壁:主要吸收炉膛中高温燃烧产物的辐射热量,工质在其中作上升运动,受热蒸发。
2、锅炉过热器:锅炉过热器是回收锅炉烟气能量的,使锅炉出来的蒸汽可以获得加热,变为干蒸汽,有利于提高锅炉热效率,也有利于蒸汽轮机避免水击 回热器是从蒸汽轮机的乏蒸汽中回收能量,加热进入锅炉的循环水。
3、省煤器:将锅炉给水加热成汽包压力下的饱和水的受热面,由于它吸收高温烟气的热量,降低了烟气的排烟温度,节省了能源,提高了效率。
4、空气预热器:是一种用于提高锅炉的热交换性能,降低能量消耗的设备。 空气预热器一般分为板式、回转式和管式三种。
扩展资料:
过热器采用辐射-对流组合式,过热器系统主要由膜式的包墙过热器、顶棚过热器和蛇型管式的低温过热器、分隔屏过热器、后屏过热器和末级过热器组成。
过热器采用常规喷水调温,共设两级三点喷水,第一级喷水设在低温过热器出口到分隔屏过热器入口的连接管道上,布置一点;第一级喷水量约占过热器总喷水量的 2/3,作为粗调,初步调节过热器蒸汽温度,同时保护屏式过热器。第二级喷水设在后屏过热器出口到末级过热器入口间的连接管道上,布置左、右两点,能分别进行调节;第二级喷水量约占总喷水量的 1/3 左右,为细调,调节末级过热器出口温度。
参考资料来源:
百度百科-空气预热器
百度百科-省煤器
百度百科-锅炉过热器
百度百科-水冷壁
1. 高压、超高压锅炉中,为什么要采用屏式过热器?
4. 高压、超高压锅炉中,为什么要采用屏式过热器?
答:随着锅炉容量和蒸汽参数的提高,锅炉的燃煤量也相应增加。由于以下的原因,高压和超高压锅炉均布置屏式过热器。
(1)压力提高,水的汽化潜热降低,因此由饱和水变为饱和蒸汽所需吸收的热量降低,即水冷壁的吸热量相应降低;由于参数和蒸发量提高,燃煤量增加,燃料在炉膛内的放热量增加,同时炉膛的容积和炉壁面积也相应增加。若炉膛内只布置水冷壁一种受热面,结果会导致炉膛出口烟温上升,引起炉内结焦。因此应增加炉膛内所布置的受热面,从传热的经济性角度出发,将部分加热蒸汽的受热面移入炉膛是合适的,故形成了屏式过热器。与此相似的是,省煤器也都采用非沸腾式省煤器。
(2)压力提高,饱和蒸汽变为过热蒸汽所需的热量增加,意味着过热器的面积必须增加,布置所需的空间也变大,会导致烟道的造价造价(必须更多的烟道容积),为节约成本和防止炉膛结焦,必须将部分过热器的面积移入炉膛,形成屏式过热器。